
2012-12-27
Revision:1.9

http://jx9.symisc.net/

The Jx9 Programming Language Reference Manual.

Copyright © Symisc Systems, S.U.A.R.L

http://symisc.net/
http://jx9.symisc.net/

Copyright

Copyright © 2012 - 2013 by Symisc Systems. This material may be distributed only
subject to the terms and conditions set forth in the Creative Commons Attribution 3.0
License or later . A copy of the Creative Commons License is available at
http://creativecommons.org/licenses/by/3.0/.

If you are interested in redistribution or republishing of this document in whole or in part,
either modified or unmodified, and you have questions, please contact the Copyright
holders at legal@symisc.net.

Portion of this document is based on the Mozilla JavaScript Guide available at
https://developer.mozilla.org/en-US/docs/JavaScript/Guide and licensed under the
Creative Commons: Attribution-Sharealike license v2.5. Copyright © 2005 - 2013 Mozilla
Developer Network and individual contributors.

Portion of this document is based on the PHP Documentation Project available at
http://php.net/manual/en/ and licensed under the Creative Commons Attribution 3.0
license v 3.0. Copyright © 1997 - 2013 by the PHP Documentation Group.

Preface

Jx9 is an embeddable scripting language also called extension language designed to
support general procedural programming with data description facilities. Jx9 is a
dynamically typed programming language based on JSON and implemented as a library.
Jx9 is written in ANSI C and should compile and run unmodified in any platform including
restricted embedded devices with a C Compiler.

Being an extension language, Jx9 has no notion of a main program, it only works
embedded in a host application. This host program can write and read Jx9 variables and
can register C/C++ functions to be called by Jx9 code.

The Jx9 download page includes a simple standalone Jx9 interpreter that allows the user
to enter and execute Jx9 files against a Jx9 engine. This utility is available in prebuilt
binaries forms or can be compiled from source. You can get a copy of the Jx9 interpreter
from the download page.

The Language

This paper describes the lexis, the syntax, and the semantics of the Jx9 programming
language. In other words, this paper describes which tokens are valid, how they can be
combined, and what their combinations mean.

• Basic Syntax

• Lexical conventions

• Instruction separation

• Comments

• Types

• Introduction

• Boolean

• Integers

• Real numbers

• NULL

• Strings

Copyright © Symisc Systems, S.U.A.R.L

http://symisc.net/
http://jx9.symisc.net/downloads.html
http://jx9.symisc.net/downloads.html
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://php.net/manual/en/
http://creativecommons.org/licenses/by-sa/2.5/
https://developer.mozilla.org/en-US/docs/JavaScript/Guide
mailto:legal@symisc.net
http://creativecommons.org/licenses/by/3.0/
http://symisc.net/

• JSON Arrays

• JSON Objects

• Resource

• Type casting

• Variables

• Basics

• Variable scope

• Predefined variables

• Expressions

• Introduction

• Operators

• Operators precedence

• Statements

• Introduction

• Conditionals

• while

• for

• break/continue

• foreach

• switch

• return

• include

• import

• Language constructs

• Functions

• Standard functions

• Function arguments

• Returning values

• Anonymous functions

• Function overloading

• Foreign functions (external link)

• Built-in functions (Standard library) (external link)

Lexical conventions

Names (also called identifiers) in Jx9 can be any string (UTF-8 stream) of letters, digits,
and underscores, not beginning with a digit. This coincides with the definition of names in

Copyright © Symisc Systems, S.U.A.R.L

http://symisc.net/
http://jx9.symisc.net/builtin_func.html
http://jx9.symisc.net/func_intro.html

most languages. Identifiers are used to name variables, functions and JSON objects fields.

The following keywords are reserved and cannot be used as names:

if else elseif for
foreach while do (not used) switch
static function case print
const default as continue
break exit die import
include string bool boolean
int integer float uplink
class (not used) object (not used) array (not used) return
goto (not used)

Jx9 is a case-sensitive language: if is a reserved word, but IF and If are two different,
valid names. As a convention, names starting with an underscore followed by uppercase
letters (such as __JX9__, __DATE__, __TIME__, etc.) are reserved for built-in constants.

Instruction separation

As in C or Perl, Jx9 requires instructions to be terminated with a semicolon ';' at the end
of each statement.

Example:

print 5+5;

continue;

rand();

Comments

Jx9 supports C/C++ (//, /* */) style comments as well Unix shell comments (#).

The "one-line" comment styles only comment to the end of the line.

Example:

// One-line C++ comment

Shell style comment

C style or block comments end at the first */ encountered. Make sure you don't nest block
style comments. It is easy to make this mistake if you are trying to comment out a large
block of code.

Example:

/*

 * This is a block comment.

 * Block comments don't nest.

 */

Copyright © Symisc Systems, S.U.A.R.L

http://symisc.net/
http://jx9.symisc.net/builtin_func.html#const

Types

Jx9 is a dynamically typed language. This means that variables do not have types; only
values do. There are no type definitions in the language. All values carry their own type.

Being based on JSON, all types are the one introduced by JSON with the addition of the
type resource which is used to pass data (Typically malloc()ed pointers) between the host
application and the underlying Jx9 virtual machine.

The following are the basic types: integer, real, string, boolean, JSON objects, JSON
arrays and the resource type.

Tip: To check the type and value of an expression, use the dump() function.

To get a human-readable representation of a type for debugging, use the gettype()
function

We will study each type in details now:

Boolean

This is the simplest type. A boolean expresses a truth value. It can be either TRUE or
FALSE.

To specify a boolean literal, use the keywords TRUE or FALSE. Both are case-insensitive.

Example:

dump(TRUE); //bool(true)
dump(True); //bool(true)
dump(FALSE); //bool(false)
dump(False); //bool(false)

Converting to Boolean

To explicitly convert a value to boolean, use the (bool) or (boolean) casts. However, in
most cases the cast is unnecessary, since a value will be automatically converted if an
operator, function or control structure requires a boolean argument.

When converting to boolean, the following values are considered FALSE:

• the boolean FALSE itself
• The NULL type
• the integer 0 (zero)
• the float 0.0 (zero)
• the empty string "" , the string "0" and the string "false"
• a JSON array with zero elements
• a JSON object with zero members

Any other value is considered true even negative numbers and the resource type.

Example:

dump((bool) -1); // bool(true)
dump((bool) ""); // bool(false)
dump((bool) "foo"); // bool(true)
dump((bool) 3.14e5); // bool(true)
dump((bool)[10,11,13]); // bool(true)
dump((bool){}); // bool(false)

Copyright © Symisc Systems, S.U.A.R.L

http://symisc.net/
builtin_func.html
builtin_func.html
http://jx9.symisc.net/c_api_object.html#jx9_vm

dump((bool) "false"); // bool(false)

Integers

Integers can be specified in decimal (base 10), hexadecimal (base 16), octal (base 8) or
binary (base 2) notation, optionally preceded by a sign (- or +).

To use octal notation, precede the number with a 0 (zero). To use hexadecimal notation
precede the number with 0x. To use binary notation precede the number with 0b.

Example:

print 0xff; //255
print 1200; //1200
print 0766; //502
print -2; //-2
print 0b1011001; //89

Using BNF:

decimal : [1-9][0-9]*
 | 0

hexadecimal : 0[xX][0-9a-fA-F]+

octal : 0[0-7]+

binary : 0b[01]+

integer : [+-]?decimal
 | [+-]?hexadecimal
 | [+-]?octal
 | [+-]?binary

Internally, integers are stored in 8 bytes (64 bit) regardless of the target platform. The
integer type can can store integer values between -9223372036854775808 and
+9223372036854775807 inclusive.

Integer size can be determined using the built-in constant JX9_INT_SIZE, and maximum
integer value using the constant JX9_INT_MAX.

To explicitly convert a value to integer, use either the (int) or (integer) casts. However,
in most cases the cast is not needed, since a value will be automatically converted if an
operator, function or control structure requires an integer argument.

Real number

Reals also known as floating point numbers or doubles can be specified using any of the
following syntax:

3.142 or 3.4e2 or 6E-3

Copyright © Symisc Systems, S.U.A.R.L

http://symisc.net/
builtin_func.html#const

Using BNF:

LNUM [0-9]+
DNUM ([0-9]*[\.]{LNUM}) | ({LNUM}[\.][0-9]*)
EXPONENT_DNUM [+-]?(({LNUM} | {DNUM}) [eE][+-]? {LNUM})

The size of a float is platform-dependent, although a maximum of ~1.8e308 with a
precision of roughly 14 decimal digits is a common value (the 64 bit IEEE format).

Floating point numbers have limited precision. Although it depends on the system, Jx9
typically uses the IEEE 754 double precision format, which will give a maximum relative
error due to rounding in the order of 1.11e-16. Non elementary arithmetic operations may
give larger errors, and, of course, error prorogation must be considered when several
operations are compounded.

To explicitly convert a value to real number, use either the (float) casts.

NULL

Null is the type of the value NULL, whose main property is to be different from any other
value. It usually represents the absence of a useful value. Both NULL and false make a
condition false.

A variable is considered to be NULL if:

• it has been assigned the constant NULL.

• it has not been declared yet.

There is only one value of type NULL, and that is the case sensitive keyword NULL or
null.

Example:

$temp = NULL;

dump($temp); //null

String

A string is a stream of bytes (i.e. UTF-8 or even binary stream).

Note: It is no problem for a string to become very large. Jx9 imposes no
boundary on the size of a string; the only limit is the available memory of the
computer on which Jx9 is running.

A string literal can be specified in three different ways:

• Single quoted

• nowdoc

• double quoted

Single quoted string

The simplest way to specify a string is to enclose it in single quotes (the character ').

Copyright © Symisc Systems, S.U.A.R.L

http://symisc.net/

To specify a literal single quote, escape it with a backslash (\). To specify a literal
backslash, double it (\\). All other instances of backslash will be treated as a literal
backslash: this means that the other escape sequences you might be used to, such as \r
or \n, will be output literally as specified rather than having any special meaning.

Note: Unlike the double-quoted string, variables and escape sequences for
special characters will not be expanded when they occur in single quoted
strings.

Example:

 print 'Hello World!'; //Hello World

 print 'It\'s me, Mario:'; //It's me, Mario

 //This will not expand a new line nor variable content

 $var = 'test';

 print 'Value of $var = $var\n'; //Value of $var = $var\n

Nowdoc

A nowdoc have the same semantic as a single quoted string except that is used to hold big
chunk of text such as unparsed Jx9 code or even binary chunks. The construct is ideal for
embedding large blocks of text without the need for escaping. It shares some features in
common with the SGML <![CDATA[]]> construct, in that it declares a block of text which
is not for parsing.

A nowdoc is identified with the <<< operator. After this operator, an identifier is provided,
then a newline. The string itself follows, and then the same identifier again to close the
quotation.

The closing identifier must begin in the first column of the line. Also, the identifier must
follow the same naming rules as any other label in Jx9.

Example:

$var = 'test';

$str = <<<EOD
Example of string
spanning multiple lines
using nowdoc syntax.

Value of $var = $var\n

//I'm not a comment
EOD;

print $str;

Double quoted string

If the string is enclosed in double-quotes ("), Jx9 will interpret more escape sequences for
special characters:

Sequence Description

Copyright © Symisc Systems, S.U.A.R.L

http://symisc.net/

\n Linefeed

\r Carriage return

\t Horizontal tab

\v Vertical tab

\f Form feed

\\ Backslash

\$ Dollar sign

\" Double quote

\' Single quote

\[0-7]{1,3} the sequence of characters matching the
regular expression is a character in octal
notation.

\x[0-9A-Fa-f]{1,2} the sequence of characters matching the
regular expression is a character in
hexadecimal notation.

\0 NUL byte.

The most important feature of double-quoted strings is the fact that variable names will be
expanded:

If a dollar sign ($) is encountered, the parser will greedily take as many tokens as possible
to form a valid variable name including JSON object and array members.

Example:

$name = 'Dean';

print "Hello, my name is = $name\n"; //Hello, my name is Dean

//Declare a simple JSON object

$person = {name : 'Wolf', age : 27 };

print "Mr $person.name is $person.age years old\n"; //Mr Wolf is 27 years old

//Declare a simple JSON array

$num = [27, 512];

print "$num[0+1] is greater than $num[0]\n"; //512 is greater than 27

JSON Arrays

A JSON array is simply an ordered sequence of values which can be any valid Jx9
expression including NULL, JSON objects or even other arrays, comma-separated and
enclosed in square brackets.

The syntax is as follows:

[[expr,expr]];

Example:

$numbers = [15, 20, 50 << 1];

Copyright © Symisc Systems, S.U.A.R.L

http://symisc.net/

/*

 Declare a JSON array with two random numbers between 0 and 1024 inclusive using the
built-in rand() function.

*/

$rand = [rand() & 1023, rand() % 1024, (512 * 2) >> 1];

//Dump array contents

print $numbers,JX9_EOL,$rand;

To access array values simply use the subscript operator. The notation is:

 $array_name[expr];

Example:

//Declare a JSON array with three fields

$my_array = [__TIME__, __DATE__, uname()];

print $my_array[0]; //14:24:05

print JX9_EOL;

print $my_array[1]; //2013-01-06

print JX9_EOL;

print $my_array[2]; //Windows 8...

JSON Objects

A JSON object is simply an unordered collection of key:value pairs with the ':' character
separating the key and the value (Which can be any valid Jx9 expression including NULL,
JSON arrays or even another objects), comma-separated and enclosed in curly braces; the
keys must be an identifier or a string and should be distinct from each other.

Example:

//Declare a simple JSON object

$user = {

 name : 'John Smith',

 login : 'jms123',

 age : 25

};

print "username= $user.name;\n name = $user.login\n age = $user.age";

This example when running should display:

 username = jms123

 name = John Smith

 age = 25

To access object member, simply use the member access operator (Also called dot
operator) as follows:

Copyright © Symisc Systems, S.U.A.R.L

http://symisc.net/

$person = {
 firstName : "John",
 lastName: "Smith",
 age: 25,
 addr: {
 "streetAddress": "21 2nd Street",
 city: "New York",
 state : "NY",
 postalCode : 10021
 }
}; //Don't forget the semi-colon here

print $person.addr.city; //New York
print JX9_EOL;
print $person.addr.postalCode; //10021

Resource

The type resource or userdata in the Jx9 jargon is a special type which is provided to allow
arbitrary C data to be stored in Jx9 variables and returned from foreign function.

The built-in standard library rely heavily on this type and is used for example by the
implementation of the IO stream functions such as fopen(), fread(), fwrite() and so forth.

This type corresponds to a block of raw memory and has no pre-defined operations in Jx9,
except assignment and identity test.

Type casting

Type casting in Jx9 works much as it does in C. the name of the desired type is written in
parentheses before the expression which is to be cast. As of this release, the supported
type are:

• Integer ==> (int) or (integer)

• Boolean ==> (bool) or (boolean)

• Real ==> (float)

• String ==> (string)

Forced cast of JSON arrays or objects is not supported and is planned for future version.

Example:

$var = (int) 2.3e+1; //Force an int cast

$var = (string)0xff; //force a string cast

Jx9 does not require explicit type definition in variable declaration; a variable's type is
determined by the context in which the variable is used. That is, if a string value is
assigned to variable $var, $var becomes a string. If an integer value is then assigned to
$var, it becomes an integer.

An example of Jx9 automatic type conversion is the addition operator '+'. If either
operand is a real, then both operands are evaluated as reals, and the result will be a real.

Copyright © Symisc Systems, S.U.A.R.L

http://symisc.net/
builtin_func.html
func_intro.html

Otherwise, the operands will be interpreted as integers, and the result will also be an
integer. Note that this does not change the types of the operands themselves; the only
change is in how the operands are evaluated and what the type of the expression itself is.

Example:

$test = "256";
dump($test); //string(3,'256')
$test += 10;
dump($test); //int(266)
$test += "25 years old";
dump($test); //int(291)
$test *= 2.5;
dump($test); //float(3.59679...)

Tip: To check the type and value of an expression, use the dump() function.

Variables

Variables are places that store values. There are three kinds of variables in Jx9: global
variables, static variables and local variables.

Variables in Jx9 are represented by a dollar sign followed by the name of the variable. The
variable name is case-sensitive.

Variable names (UTF-8 Stream) follow the same rules as other labels in Jx9. Refer to the
lexical convention section for additional information.

Example:

$var = 'Foo';
$Var = 'Bar';

print "$var, $Var"; // outputs "Foo Bar"

$概要 = "JX9 Scripting Engine";
$文書 = "http://jx9.symisc.net";

/* Test */
dump($概要,$文書);

Variable scope

The scope of a variable is the context within which it is defined. For the most part all Jx9
variables only have a single scope. This single scope spans imported files as well. For
example:

$foo = __TIME__;
import 'driver.jx9';

Here the $foo variable will be available within the imported driver.jx9 script.

However, within user-defined functions a local function scope is introduced. Any variable
used inside a function is by default limited to the local function scope. For example:

Copyright © Symisc Systems, S.U.A.R.L

http://symisc.net/
builtin_func.html

$foo = rand(); //A random integer

function test()

{

 print $foo; //null, since $foo is not declared in this scope.

}

This script will not produce any output because the print statement refers to a local
version of the $foo variable which is not declared and assigned a value in this scope. You
may notice that this is a little bit different from the C language in that global variables in C
are automatically available to functions unless specifically overridden by a local definition.

The uplink keyword.

In order to modify or to make a global variable available in a local scope, you must use
the uplink keyword with the name of the target global variables as follows:

$foo = rand(); //A random integer

$bar = rand_str(3); //A random string of length 3

function test()

{

 uplink $foo, $bar; //Make $foo and $bar available in the current scope

 print $foo,' ',$bar; //Output the old value of $foo and $bar.

 /* Modify $foo and $bar */

 $foo = 1023;

 $bar = 'New value';

 print JX9_EOL;

}

test();

/* Global scope */

print $foo; //1023

print $bar; //New value

That is, with the uplink statement, all references to either variable will refer to the global
version. There is no limit to the number of global variables that can be manipulated by a
function.

The static keyword.

a static variable is a variable that has been allocated statically and whose lifetime
extends across the entire run of the program. That is, a static variable exists only in a
local function scope, but it does not lose its value when program execution leaves this
scope.

To declare a variable static, simply precede it with the keyword static as follows:

function test()

{

 static $num = rand() & 1023; //Random integer between 0 and 1024 inclusive

Copyright © Symisc Systems, S.U.A.R.L

http://symisc.net/

 /* Print the number and increment its value by one */

 print $num++;

 print JX9_EOL;

 }

 test(); //59

 test(); //60

 test(); //61

 test(); //62

Note that static variables can take any complex expressions including function calls as
their initialization value.

Declaring a variable static in the global scope is a no-op.

Static variables also provide one way to deal with recursive functions. A recursive function
is one which calls itself. Care must be taken when writing a recursive function because it is
possible to make it recurse indefinitely. You must make sure you have an adequate way of
terminating the recursion. The following simple function recursively counts to 5, using the
static variable $count to know when to stop:

function test()

{

 static $count = 0;

 /* Increment the static counter */

 if($count++ < 5){

 /* Recurse and call test() again */

 test();

 }

 }

Predefined variables

Jx9 is shipped with a set of predefined global variables available in all scopes (without the
need of the uplink statement. The following table summarize the predefined variables and
their purposes.

Predefined variable name Purpose

$argv JSON array holding command line
arguments.

$_ENV JSON object holding environments info.

$_FILES JSON array holding the name of the
imported files.

$_GET JSON object holding decoded GET query.

$_POST JSON object holding decoded POST request.

$_HEADER JSON object holding HTTP request MIME

Copyright © Symisc Systems, S.U.A.R.L

http://symisc.net/
c_api_func.html#vm_config_http
c_api_func.html#vm_config_http
c_api_func.html#vm_config_http

header.

Note that host applications can define their own predefined variables using the
jx9_vm_config() interface with a configuration verb set to JX9_VM_CONFIG_CREATE_VAR.

Also note that the predefined variables defined above can also be populated by the host
application with the desired key, value pair using the jx9_vm_config() interface.

Also, the host application can extract the contents of or more variables declared inside the
target Jx9 script using a call to jx9_vm_extract_variable().

Expressions

An expression in a programming language is a combination of explicit values, constants,
variables, operators, and functions that are interpreted according to the particular rules of
precedence and of association for a particular programming language, which computes
and then produces (returns, in a stateful environment) another value. This process, like
for mathematical expressions, is called evaluation. The value can be of various types,
such as numerical, string, and logical. (src: Wikipedia)

For example, 2+3 is an arithmetic and programming expression which evaluates to 5. A
variable is an expression because it denotes a value in memory, so $y+6 is an expression.
An example of a relational expression is 4 != 4, which evaluates to false

Expressions are the most important building stones of Jx9. In Jx9, almost anything you
write is an expression. The simplest yet most accurate way to define an expression is
"anything that has a value".

Conceptually, there are two types of expressions: those that assign a value to a variable,
and those that simply have a value. For example, the expression $x = 6 is an expression
that assigns the variable $x the value seven. This expression itself evaluates to seven.
Such expressions use assignment operators. On the other hand, the expression 4 + 2
simply evaluates to seven; it does not perform an assignment. The operators used in such
expressions are referred to simply as operators.

Operators

An operator is something that takes one or more values (or expressions, in programming
jargon) and yields another value (so that the construction itself becomes an expression).

Operators can be grouped according to the number of values they take. Unary operators
take only one value, for example ! (the logical not operator) or ++ (the increment
operator). Binary operators take two values, such as the familiar arithmetical operators +
(plus) and - (minus), and the majority of Jx9 operators fall into this category. Finally,
there is a single ternary operator, ? , which takes three values; this is usually referred to
simply as "the ternary operator" (although it could perhaps more properly be called the
conditional operator).

Jx9 has the following types of operators. This section describes the operators and contains
information about operator precedence.

• Assignment Operators

• Arithmetic Operators

Copyright © Symisc Systems, S.U.A.R.L

http://symisc.net/
c_api_func.html#jx9_vm_extract_variable
c_api_func.html#jx9_vm_config
c_api_func.html#vm_config_create_var
c_api_func.html#jx9_vm_config

• Comparison Operators

• Ternary Operator

• Bitwise Operators

• Logical Operators

• String Operators

• Member Access Operators

• JSON Arrays/Objects Operators

• Comma Operator

Assignment Operators

An assignment operator assigns a value to its left operand based on the value of its right
operand. The basic assignment operator is equal (=), which assigns the value of its right
operand to its left operand. That is, $x = 10 assigns the value of 10 to the variable $x.

In addition to the basic assignment operator, there are "combined operators" for all of the
binary arithmetic, JSON array/object union and string operators that allow you to use a
value in an expression and then set its value to the result of that expression.

Assignment operators:
Shorthand operator Meaning Description

$x = expr - Simple assignment.

$x += expr x = x + y

Add and store. This is an
overloaded operator which mean
that it's behavior depend on the
given operands.

$x -= expr x = x - y Subtract and store.

$x *= expr x = x * y Multiply and store.

$x /= expr x = x / y Divide and store.

$x %= expr x = x % y Modulo and store.

$x <<= expr x = x << y Left shift and store.

$x >>= expr x = x >> y Right shift and store.

$x .= expr x = x .. y Concatenate string and store.

$x &= expr x = x & y Bit-and and store.

$x ^= expr x = x ^ y Bit-xor and store.

$x |= expr x = x | y Bit-or and store.

Note that the assignment copies the original variable to the new one (assignment by
value), so changes to one will not affect the other.

An exception to the usual assignment by value occurs when dealing with JSON arrays and
objects which are assigned by reference (for performance reason). That is, when assigning
an already created instance of a JSON array or object to a variable, the new variable will
access the same instance as the array or object that was assigned. In other words, arrays
and objects are shared between variables. This behavior is the same when passing arrays

Copyright © Symisc Systems, S.U.A.R.L

http://symisc.net/

or objects to a function.

Arithmetic Operators

Arithmetic operators take numerical (64 integers or real numbers) values (either literals,
variables or even strings) as their operands and return a single numerical value. The
standard arithmetic operators are addition (+), subtraction (-), multiplication (*), and
division (/). These operators work as they do in most other programming languages when
used with floating point numbers (in particular, The division operator ("/") returns a float
value unless the two operands are integers (or strings that get converted to integers) and
the numbers are evenly divisible, in which case an integer value will be returned.)

In addition, Jx9 provides the arithmetic operators listed in the following table.

Arithmetic Operators
Operator Description Example

++

Unary increment operator. Adds one to its
operand. If used as a prefix operator (++$x),
returns the value of its operand after adding
one; if used as a postfix operator ($x++),
returns the value of its operand before adding
one.

If $x is 10, then ++$x;
sets $x to 11 and returns
11, whereas $x++;
returns 10 and, only then,
sets $x to 11.

-- Unary decrement operator. Subtracts one from
its operand. The return value is analogous to
that for the increment operator.

If $x is 10, then --$x;
sets $x to 9 and returns
9, whereas $x--; returns
10 and, only then, sets $x
to 9.

%
Modulus: Returns the integer remainder of
dividing the two operands.

print 1024 % 0xff; //4

-
Unary negation operator. Returns the negation of
its operand.

$x = -15;
print $x; //-15

Comparison Operators

Comparison operators, as their name implies, allow you to compare two values.

A comparison operator compares its operands and returns a logical value based on
whether the comparison is true. The operands can be numerical, string, logical, or object
values. Strings are compared byte per byte using a memcmp() like function. In most
cases, if the two operands are not of the same type, Jx9 attempts to convert the operands
to an appropriate type for the comparison. (The sole exceptions to this rule are === and !
==, which perform "strict" equality and inequality and which do not attempt to convert
the operands to compatible types before checking equality.) The following table describes
the comparison operators, assuming the following code:

$x = 6, $y = 10
Comparison operators

Operator Description Examples

== Equal Returns true if the operands are equal.

6 == $x

"6" == $x

10 == 0xA

!= Not equal Returns true if the operands are not equal. $x != 10

Copyright © Symisc Systems, S.U.A.R.L

http://symisc.net/

Operator Description Examples

$y != "6"

<> Not equal Returns true if the operands are not equal. $x <> 10
$y <> "6"

=== Strict equal Returns true if the operands are equal and of
the same type.

6 === $x

!== Strict not equal Returns true if the operands are not equal
and/or not of the same type.

$x !== "6"
6 !== '6'

> Greater than Returns true if the left operand is greater than
the right operand.

$x > $y
'12 sheep' > 0xA

>= Greater than or
equal

Returns true if the left operand is greater than
or equal to the right operand.

$x >= $y
$x >= 100

< Less than Returns true if the left operand is less than
the right operand.

$x < $y

<= Less than or
equal

Returns true if the left operand is less than or
equal to the right operand.

$x <= $y
$x <= 10

Ternary Operator

The ternary operator is the only Jx9 operator that takes three operands. The operator can
have one of two values based on a condition. The syntax is:

 condition ? expr1 : expr2 ;

If condition is true, the operator has the value of expr1. Otherwise it has the value of
expr2. You can use the conditional operator anywhere you would use a standard operator.

Example:

 $rank = 6;

 $status = $rank > 5 ? "good" : "bad";

 print $status; //good

Bitwise Operators

Bitwise operators treat their operands as a set of 64 bits (zeros and ones), rather than as
decimal, hexadecimal, or octal numbers. For example, the decimal number nine has a
binary representation of 1001. Bitwise operators perform their operations on such binary
representations, but they return standard Jx9 numerical values.

The following table summarizes Jx9 bitwise operators:

Operator Usage Description

Bit AND a & b
Returns a one in each bit position for which the
corresponding bits of both operands are ones.

Bit OR a | b
Returns a one in each bit position for which the
corresponding bits of either or both operands are ones.

Bit XOR a ^ b
Returns a one in each bit position for which the
corresponding bits of either but not both operands are
ones.

Bit NOT ~ a Inverts the bits of its operand.

Left shift a << b
Shifts a in binary representation b bits to the left, shifting in
zeros from the right.

Copyright © Symisc Systems, S.U.A.R.L

http://symisc.net/

Operator Usage Description

Right shift a >> b
Shifts a in binary representation b bits to the right,
discarding bits shifted off.

Logical Operators.

Logical operators are typically used with Boolean (logical) values; when they are, they
return a Boolean value. However, the && and || operators actually return the value of one
of the specified operands, so if these operators are used with non-Boolean values, they
may return a non-Boolean value. The logical operators are described in the following table.

Table 3.6 Logical operators
Operator Usage Description

&& expr1 && expr2

(Logical AND) Returns expr1 if it can be converted to
false; otherwise, returns expr2. Thus, when used with
Boolean values, && returns true if both operands are
true; otherwise, returns false.

|| expr1 || expr2

(Logical OR) Returns expr1 if it can be converted to true;
otherwise, returns expr2. Thus, when used with Boolean
values, || returns true if either operand is true; if both
are false, returns false.

! !expr (Logical NOT) Returns false if its single operand can be
converted to true; otherwise, returns true.

Examples of expressions that can be converted to false are those that evaluate to null, 0
or the empty string ("").

Short-circuit evaluation

As logical expressions are evaluated left to right, they are tested for possible "short-
circuit" evaluation using the following rules:

• false && anything is short-circuit evaluated to false.
• true || anything is short-circuit evaluated to true.

The rules of logic guarantee that these evaluations are always correct. Note that the
anything part of the above expressions is not evaluated, so any side effects of doing so do
not take effect.

Example:

//foo() will never get called as those operators are short-circuit

$x = false && foo(); // $x = false;
$y = true || foo(); // $y = true;

String Operators.

In addition to the comparison operators, which can be used on string values, the
concatenation operator .. (two dots) concatenates two string values together, returning
another string that is the union of the two operand strings. For example, "my " .. "string"
returns the string "my string".

The shorthand assignment operator .= can also be used to concatenate strings.

Example:

 $date = 'Current date is: ' .. __DATE__;

Copyright © Symisc Systems, S.U.A.R.L

http://symisc.net/

 print $date .. JX9_EOL; //Current date is: 2013-01-06

 //Append a single space and the current time

 $date .= ' ' .. __TIME__;

 print $date //Current date is: 2013-01-06 11:58:02

Member Access Operators.

Member operators provide access to an object's properties and arrays entries.

A JSON object is actually an associative array (i.e. map, dictionary, hash). The keys in this
hash are the names of object members.

There are two ways to access array and object members: dot notation and bracket
notation (i.e: subscript operator).

Dot notation

Here, simply separate the object name and the target member (including anonymous
functions) with a dot as follows:

//declare a simple JSON object

$my_object = {

 'time' : __TIME__, //Current time

 'date' : __DATE__, //Current date

 'os' : uname() //Host operating system

};

//Output object members values

print $my_object.time; //14:27:32

print JX9_EOL; //\n

print $my_object.date; //2012-01-06

print JX9_EOL;

print $my_object.os; //Ubuntu Linux …

Object that declare another object:

$person = {
 firstName : "John",
 lastName: "Smith",
 age: 25,
 addr: {
 "streetAddress": "21 2nd Street",
 city: "New York",
 state : "NY",
 postalCode : 10021
 }
}; //Don't forget the semi-colon here

print $person.addr.city; //New York
print JX9_EOL;
print $person.addr.postalCode; //10021

Copyright © Symisc Systems, S.U.A.R.L

http://symisc.net/

Bracket notation

Bracket notation or subscript operator is used to access JSON array fields where their keys
are usually numeric and are automatically assigned by the underlying Jx9 virtual machine.

The notation is

 $array_name[expr];

Example:

//Declare a JSON array with three fields

$my_array = [__TIME__, __DATE__, uname()];

print $my_array[0]; //14:24:05

print JX9_EOL;

print $my_array[1]; //2013-01-06

print JX9_EOL;

print $my_array[2]; //Windows 8...

The subscript operator is used also to populate JSON objects/arrays with new members
(i.e. Key/Value pair) after their instantiation as follows:

//Declare an empty JSON object

$my_info = {};

//Populate the object

$my_info['name'] = 'John Smith';

$my_info['age'] = 27;

print $my_info; // { "name" : "John Smith", "age" : 27 }

JSON Array/Object Operators

Operators Table

Operator Usage Description

+ Union Union of two JSON array or
object.

== Equality TRUE if the two object have
the same key/value pairs.

!= Inequality TRUE if $y is not equal to
$y.

Example:

//Declare two JSON objects and perform their union.

$a = {

 a : "apple",

 b : "banana"

 };
$b = {

 a : "pear",

Copyright © Symisc Systems, S.U.A.R.L

http://symisc.net/

 b : "strawberry",

 c : "cherry"

 };

$c = $a + $b; // Union of $a and $b
print "Union of \$a and \$b: \n";
print $c;

$c = $b + $a; // Union of $b and $a
print "Union of \$b and \$a: \n";
print $c;

When running, you should see something like that:

Union of $a and $b:
{ "a" : "apple", "b" : "banana", "c": "cherry" }
Union of $b and $a:
{ "a" : "pear", "b" : "strawberry", "c" : "cherry" }

The Jx9 standard library includes a set of useful functions for working with JSON arrays
and objects (i.e. sorting, merging, diff functions and so forth). Refer to the built-in
functions page for additional information.

Comma Operator.

A comma expression contains two operands of any type separated by a comma and has
left-to-right associativity. The left operand is fully evaluated, possibly producing side
effects, and its value, if there is one, is discarded. The right operand is then evaluated.
The type and value of the result of a comma expression are those of its right operand,
after the usual unary conversions.

Any number of expressions separated by commas can form a single expression because
the comma operator is associative. The use of the comma operator guarantees that the
sub-expressions will be evaluated in left-to-right order, and the value of the last becomes
the value of the entire expression.

The following example assign the value 25 to the variable $a, multiply the value of $a with
2 and assign the result to variable $b and finally we call a test function to output the value
of $a and $b. Keep-in mind that all theses operations are done in a single expression
using the comma operator.

Example:

$a = 25 , $b = $a << 1 , test();
/* Output the value of $a and $b */
function test(){
 uplink $a,$b;
 print "\$a = $a \$b= $b\n"; /* You should see: $a = 25 $b = 50*/
}

The primary use of comma expressions is to produce side effects in the following
situations:

• Calling a function
• Entering an iteration loop
• Testing a condition

In some contexts where the comma character is used, parentheses are required to avoid

Copyright © Symisc Systems, S.U.A.R.L

http://symisc.net/
builtin_func.html
builtin_func.html

ambiguity.

Operators Precedence

The precedence of operators determines the order they are applied when evaluating an
expression. You can override operator precedence by using parentheses.

The following table describes the precedence of operators, from highest to lowest.

Operator Name Operator

Member Access . []

Function Call ()

Increment/Decrement ++ --

Unary/Negation - + ! ~

Type Cast (int) (string) (float) (bool)

Multiply/Divide/Modulo * / %

Addition/Subtraction/Concatenation + - ..

Bitwise shift << >>

Relational > >= < <=

Equality <>

Equality == != === !==

Bitwise-and &

Bitwsise-xor ^

Bitwise-or |

Logical and &&

Logical or ||

Ternary ?:

Assignment = += -= *= /= %= .= &= |= ^= <<=
>>=

Comma ,

Statements

a statement is the smallest standalone element of an imperative programming language.
A program written in such a language is formed by a sequence of one or more
statements. (src: Wikipedia)

Any expression is also a statement. See Expressions and Operators for additional
information.

Use the semicolon ; character to separate statements in Jx9 code.

Block Statements

A block statement is used to group statements. The block is delimited by a pair of curly

Copyright © Symisc Systems, S.U.A.R.L

http://symisc.net/

brackets:

{
 stmt_1;
 stmt_2;
 ...
 stmt_n;
}
Block statements are commonly used with control flow statements (i.e. if, for, while) as
follows:

$x = 0;

while($x++ < 5){

 print "$x\n";

}

Conditionals

A conditional statement is a set of commands that executes if a specified condition is true.
Jx9 supports two conditional statements: if...else and switch.

if..else..else if..elseif

Use the if statement to execute a statement if a logical condition is true. Use the optional
else clause to execute a statement if the condition is false. You may also compound the
statements using else if or elseif to have multiple conditions tested in sequence.

An if statement looks as follows:

if (condition)
 statement_1
[else if (condition_2)
 statement_2]
...
[elseif (condition_n_1)
 statement_n_1]
[else
 statement_n]

condition can be any expression that evaluates to true or false. If condition evaluates to
true, statement_1 is executed; otherwise, statement_2 is executed. statement_1 and
statement_2 can be any statement, including further nested if statements.

To execute multiple statements, use a block statement ({ ... }) to group those
statements. In general, it is a good practice to always use block statements, especially in
code involving nested if statements:

if (condition) {

 stmts_1

}else if (condition2){

 stmts_2

}else{

Copyright © Symisc Systems, S.U.A.R.L

http://symisc.net/

 stmts_3

}

Example:

$x = 10, $y = 20;

if($x > $y){

 print "\$x is greater than \$y\n";

}elseif ($x < $y){

 print "\$x is smaller than \$y\n";

}else{

 print "\$x and \$y are equals\n";

}

While Statement

while loops are the simplest type of loop in Jx9. They behave just like their C
counterparts. The basic form of a while statement is:

while (expr)
 statement

The meaning of a while statement is simple. It tells Jx9 to execute the nested
statement(s) repeatedly, as long as the while expression evaluates to TRUE. The value of
the expression is checked each time at the beginning of the loop, so even if this value
changes during the execution of the nested statement(s), execution will not stop until the
end of the iteration (each time Jx9 runs the statements in the loop is one iteration).
Sometimes, if the while expression evaluates to FALSE from the very beginning, the
nested statement(s) won't even be run once.

Example:

//Loop until $x >= 5

$x = 0;

while($x++ < 5){

 print "$x\n";

}

For Statement

for statement are one of the most powerful looping mechanism in Jx9. They behave like
their C counterparts. The syntax of a for loop is:

for (init_expr; cond_expr; post_expr)
 statement

The first expression (init_expr) is evaluated (executed) once unconditionally at the
beginning of the loop.

Copyright © Symisc Systems, S.U.A.R.L

http://symisc.net/

In the beginning of each iteration, cond_expr is evaluated. If it evaluates to TRUE, the
loop continues and the nested statement(s) are executed. If it evaluates to FALSE, the
execution of the loop ends.

At the end of each iteration, post_expr is evaluated (executed).

Each of the expressions can be empty or contain multiple expressions separated by
commas. In cond_expr, all expressions separated by a comma are evaluated but the
result is taken from the last part. cond_expr being empty means the loop should be run
indefinitely (Jx9 implicitly considers it as TRUE, like C). This may not be as useless as you
might think, since often you'd want to end the loop using a conditional break statement
instead of using the for truth expression.

Example:

/* example 1 */

for ($i = 1; $i <= 10; $i++) {
 print $i;
}

/* example 2 */

for ($i = 1; ; $i++) {
 if ($i > 10) {
 break;
 }
 print $i;
}

/* example 3 */

$i = 1;
for (; ;) {
 if ($i > 10) {
 break;
 }
 print $i;
 $i++;
}

/* example 4 */

for ($i = 1, $j = 0; $i <= 10; $j += $i, print $i, $i++);

break/continue statements

break ends execution of the current for, foreach, while or switch structure.

break accepts an optional numeric argument which tells it how many nested enclosing
structures are to be broken out of.

Example:

/* Using the optional argument. */
$i = 0;
while (++$i) {

Copyright © Symisc Systems, S.U.A.R.L

http://symisc.net/

 switch ($i) {
 case 5:
 print "At 5\n";
 break 1; /* Exit only the switch. */
 case 10:
 print "At 10; quitting\n";
 break 2; /* Exit the switch and the while. */
 default:
 break;
 }
}

continue is used within looping structures to skip the rest of the current loop iteration
and continue execution at the condition evaluation and then the beginning of the next
iteration.

continue accepts an optional numeric argument which tells it how many levels of
enclosing loops it should skip to the end of.

Note: continue 0; and continue 1; is the same as running continue;.

Example:

$i = 0;
while ($i++ < 5) {
 print "Outer\n";
 while (1) {
 print "Middle\n";
 while (1) {
 print "Inner\n";
 continue 3;
 }
 print "This never gets output.\n";
 }
 print "Neither does this.\n";
}

foreach statement

The foreach construct simply gives an easy way to iterate over JSON arrays or objects.
foreach works only on arrays and objects, and will issue a run-time warning when you try
to use it on a variable with a different data type or an uninitialized variable. There are two
syntaxes; the second is a minor but useful extension of the first:

foreach (array_or_object_expr as $value)
 statement;
foreach (array_or_object_expr as $key , $value)
 statement;

The first form loops over the target array or object given by array_or_object_expr. On
each loop, the value of the current element is assigned to $value and the internal
array/object cursor is advanced by one (so on the next loop, you'll be looking at the next
element).

The second form does the same thing, except that the current element's key will be

Copyright © Symisc Systems, S.U.A.R.L

http://symisc.net/

assigned to the variable $key on each loop.

Note: When foreach first starts executing, the internal array/object pointer is
automatically reset to the first element of the array.

Example:

/* Iterate over a JSON object */

$person = {
 firstName : "John",
 lastName: "Smith",
 age: 25,
 addr: {
 "streetAddress": "21 2nd Street",
 city: "New York",
 state : "NY",
 postalCode : 10021
 }
}; //Don't forget the semi-colon here

foreach($person as $key, $value){
 print "$key ==> $value\n";
}

Example2:

/* Iterate over a JSON array */
foreach([5,6,7,8,9,10] as $value){
 print "$value\n";
 }

switch statement

A switch statement allows a program to evaluate an expression and attempt to match the
expression's value to a case label. If a match is found, the program executes the
associated statement.

A switch statement looks as follows:

switch(expr){

 case cond1:

 stmt1;

 [break;]

 case cond2:

 stmt2;

 [break;]

 [default:

 def_stmt;

 [break;]

]

Copyright © Symisc Systems, S.U.A.R.L

http://symisc.net/

}

The program first looks for a case clause with a label matching the value of expression
(Any complex expression including function calls) and then transfers control to that clause,
executing the associated statements. If no matching label is found, the program looks for
the optional default clause, and if found, transfers control to that clause, executing the
associated statements. If no default clause is found, the program continues execution at
the statement following the end of switch. By convention, the default clause is the last
clause, but it does not need to be so.

The optional break statement associated with each case clause ensures that the program
breaks out of switch once the matched statement is executed and continues execution at
the statement following switch. If break is omitted, the program continues execution at
the next statement in the switch statement.

Note: Unlike some other languages, the continue statement applies to switch
and acts similar to break. If you have a switch inside a loop and wish to
continue to the next iteration of the outer loop, use continue 2.

Example:

$i = 'banana';

switch ($i) {
 case "apple":
 print "i is apple";
 break;
 case "banana":
 print "i is banana";
 break;
 case "cake":
 print "i is cake";
 break;
}

return statement

If called from within a function, the return() statement immediately ends execution of
the current function, and returns its argument as the value of the function call.

If called from the global scope, then execution of the current script file is ended. If the
current script file was include()ed or import()ed, then control is passed back to the calling
file. Furthermore, if the current script file was include()ed, then the value given to
return() will be returned as the value of the include() call.

Note: If no parameter is supplied, then NULL is returned to the caller.

include

The include statement includes and evaluates the specified file.

Files are included based on the file path given or, if none is given, include will finally
check in the calling script's own directory and the current working directory before failing.
The include construct will emit a run-time warning if it cannot find a file.

Copyright © Symisc Systems, S.U.A.R.L

http://symisc.net/
c_api_func.html#jx9_vm_config

If a path is defined — whether absolute (starting with a drive letter or \ on Windows, or /
on Unix/Linux systems) or relative to the current directory (starting with . or ..) — the
registered paths will be ignored altogether. For example, if a filename begins with ../, the
Jx9 Virtual Machine will look in the parent directory to find the requested file.

When a file is included, the code it contains inherits the variable scope of the line on which
the include occurs. Any variables available at that line in the calling file will be available
within the called file, from that point forward. However, all functions and classes defined in
the included file have the global scope.

If the include occurs inside a function within the calling file, then all of the code contained
in the called file will behave as though it had been defined inside that function.

Example of includes:

include 'driver.jx9'; //Local relative path

include '/usr/local/lib/main.jx9'; //Local absolute path

include 'http://jx9.symisc.net/driver.jx9'; //Remote include

Note: The remote include facility will be available only if the HTTP IO stream is
registered within the target Jx9 Virtual Machine (which is not the case in the default
build).

import

The import statement includes and evaluates the specified file during the execution of the
script. This is a behavior similar to the include() statement, with the only difference being
that if the code from a file has already been included, it will not be included again. That is,
it will be included just once.

import may be used in cases where the same file might be included and evaluated more
than once during a particular execution of a script, so in this case it may help avoid
problems such as function redefinitions, variable value reassignments, etc.

See the include documentation for information about how this construct works.

Language Constructs

The Jx9 language constructs resemble to a standard function except that you do not need
parenthesis to invoke them. These constructs are:

print

 print expr[, expr];

The print construct is used to output one or more expressions to the default VM
output consumer callback.

die

 die [expr];

 This construct when invoked output a message if available and terminate the
current script.

Example:

 die;

Copyright © Symisc Systems, S.U.A.R.L

http://symisc.net/
output_consumer.html
c_api_object.html#jx9_io_stream
http://jx9.symisc.net/driver.jx9
c_api_object.html#jx9_vm

 die 'Giving Up!!';

Function

Functions are one of the fundamental building blocks in Jx9. A function is a Jx9 procedure
—a set of statements that performs a task or calculates a value. To use a function, you
must define it somewhere in the scope from which you wish to call it.

A function definition (also called a function declaration) consists of the function
keyword, followed by

• The name of the function.
• A list of arguments to the function with optional type, enclosed in parentheses and

separated by commas.
• The Jx9 statements that define the function, enclosed in curly braces, { }.

For example, the following code defines a simple function named square:

function square($number)

{

 return $number * $number;

}

The same function could be declared using the type hinting feature as follows:

function square(int $number)

{

 return $number * $number;

}

With type hinting, arguments are automatically and silently converted to the desired type,
here the integer type in our example.

Scalar parameters values (integer, string, floats and boolean) are passed to functions by
value; the value is passed to the function, but if the function changes the value of the
parameter, this change is not reflected globally or in the calling function.

If you pass a JSON object or a JSON array, and the function changes the object's
properties, that change is visible outside the function. This is called pass by reference.

A function can be recursive; that is, it can call itself. For example, here is a function that
computes factorials recursively:

function factorial(int $num){

 if($num == 0 || $num == 1)

 return 1;

 else

 return $num * factorial($num – 1);

}

print factorial(5); //120

Note: The recursion limit (i.e. Total number of times a function may call itself) can
be controlled by the host application via the jx9_vm_config() interface with a
configuration verb set to JX9_VM_CONFIG_RECURSION_DEPTH.

Note: Function names under Jx9 are case-sensitive which mean that Foo() and

Copyright © Symisc Systems, S.U.A.R.L

http://symisc.net/
c_api_func.html#jx9_vm_config

foo() are completely different.

Jx9 supports the concept of variable functions. This means that if a variable name has
parentheses appended to it, Jx9 will look for a function with the same name as whatever
the variable evaluates to, and will attempt to execute it. Among other things, this can be
used to implement callbacks, function tables, and so forth.

Example

function hello(string $name)

{

 print "Hello $name\n";

}

//Assign the function name to the variable $x

$x = 'he'..'llo';

//Invoke whatever $x evaluate to

$x('Dean'); //Hello Dean

Function Arguments

Information may be passed to functions via the argument list, which is a comma-delimited
list of expressions.

A function may define C++-style default values for its arguments which can be any
complex expression including function call.

Example:

function test(string $name = 'user_id_'..rand_str(4), int $age = 10 * 2 + 5)

{
 print "Name = $name\n";
 print "Age = $age\n";
}
/* Call without arguments */
test(); /* You should see: name = user_id_resr age = 25 */
/* Call with a single argument */
test('Me'); /* You should see: name = Me age = 25 */

Jx9 support variable-length argument lists in user-defined functions. This is really quite
easy, using the func_num_args(), func_get_arg(), and func_get_args() functions.

No special syntax is required, and argument lists may still be explicitly provided with
function definitions and will behave as normal.

Returning values

Refer to the return statement.

Copyright © Symisc Systems, S.U.A.R.L

http://symisc.net/
builtin_func.html
builtin_func.html
builtin_func.html
builtin_func.html

Anonymous Function

Anonymous functions, also known as lambda, allow the creation of functions which have
no specified name. They are most useful as the value of callback parameters, but they
have many other uses.

Anonymous functions are declared exactly like a standard function but without the
associated identifier (i.e. The function name).

Example:

$greet = function($name)
{
 printf("Hello %s\n", $name);
};
$greet('World'); //Hello World

Like any other expressions, anonymous function can be passed as an argument to a
function as follows:

function main($callback)

{

 if(!is_callable($callback))

 print "Not callable\n";

 else

 //Invoke the given callback

 $callback();

 }

//Pass a simple callback that display a greeting message

main(function(){ print "Hello World\n"; }); //Hello world

Function overloading

Function overloading is a feature found in various programming languages such as C++
or Java, that allows creating several function and/or methods with the same name which
differ from each other in the type of the input and the output of the function. It is simply
defined as the ability of one function to perform different tasks. (src: Wikipedia)

Function overloading means two or more functions can have the same name but either the
number of arguments or the data type of arguments has to be different.

Jx9 has support for this powerful mechanism. That is, you define two ore more standard
Jx9 functions with the same name but with different arguments number and/or signature
and finally you perform a simple function call and let Jx9 peek the appropriate function for
this context.

Example:

// volume of a cube
function volume(int $s)
{
 return $s*$s*$s;
}

Copyright © Symisc Systems, S.U.A.R.L

http://symisc.net/
http://en.wikipedia.org/wiki/Function_overloading
builtin_func.html

// volume of a cylinder
function volume(float $r,int $h)
{
 return 3.14*$r*$r*$h;
}
// volume of a cuboid
function volume(float $l,int $b,int $h)
{
 return $l*$b*$h;
}
/* Test the overloading mechanism */
print volume(10)..JX8_EOL; /* 1000 */
print volume(2.5,8)..JX9_EOL; /* 157 */
print volume(100,75,15); /* 112500 */

Copyright © Symisc Systems, S.U.A.R.L

http://symisc.net/

	Copyright
	Preface
	The Language
	Lexical conventions
	Instruction separation
	Comments
	Types
	Boolean
	Integers
	Real number
	NULL
	String
	Single quoted string
	Nowdoc
	Double quoted string
	JSON Arrays
	JSON Objects
	Resource
	Type casting
	Variables
	Variable scope
	The uplink keyword.
	The static keyword.
	Predefined variables
	Expressions
	Operators
	Assignment Operators
	Arithmetic Operators
	Comparison Operators
	Ternary Operator
	Bitwise Operators
	Logical Operators.
	Short-circuit evaluation

	String Operators.
	Member Access Operators.
	Dot notation
	Bracket notation
	JSON Array/Object Operators
	Comma Operator.
	Operators Precedence
	Statements
	Block Statements
	Conditionals
	if..else..else if..elseif
	While Statement
	For Statement
	break/continue statements
	foreach statement
	switch statement
	return statement
	include
	import
	Language Constructs
	Function
	Function Arguments
	Returning values
	Anonymous Function
	Function overloading

